

Applications of ZigBee Technology

NIST October 7, 2005
Dr. John Lin
TUV Rheinland Group
Wireless Business Development
ZigBee Alliance ZQG Technical Editor

- Primer on ZigBee technology and its applications
 - Provide general understanding of ZigBee
 - Technology
 - Understand the vocabulary of ZigBee
 - General idea about how ZigBee devices are constructed and used
 - Relevant Regulatory Issues

Feature(s)	IEEE 802.11b	Bluetooth	IEEE 802.15.4		
Power Profile	Hours	1 Week	1Year+		
ВОМ	\$9	\$6	\$3		
Complexity	Complex	Very Complex	Simple		
Nodes/Master	32	7	64000		
Latency	Enumeration upto 3 seconds	Enumeration upto 10 seconds	Enumeration 30ms		
Range	100 m	10m	70m		
Extendability	Roaming possible	No	YES		
Data Rate	11Mbps	1Mbps	250Kbps		
Security	Authentication Service Set ID (SSID)	64 bit, 128 bit	128 bit AES and Application Layer user defined		

Point to Point

- Simple wire replacement
- Direct Connection between devices
- Limited communication

Point to Multi-Point

- Centralized routing and control point
- Examples include: Wi-Fi, GSM, Bluetooth
- · All data must flow through "base station"

Multi-hop/Mesh

- Full RF redundancy, with multiple data paths
- Self Configuring / Self Healing
- Distributed Intelligence

ZigBee Stack

Level 3

Level 2

Level 1

IEEE 802.15.4 Radio

Upper Layers

IEEE 802.2 LLC

Other LLC

IEEE 802.15.4 MAC

IEEE 802.15.4 868/915 MHz PHY IEEE 802.15.4 2400 MHz PHY

- Data rates of 250 kb/s, 40 kb/s and 20 kb/s.
- Star or Peer-to-Peer operation.
- Support for low latency devices.
- CSMA-CA channel access.
- Dynamic device addressing.
- •Fully handshaked protocol for transfer reliability.
- Low power consumption.
- •Frequency Bands of Operation, either:
 - √16 channels in the 2.4GHz ISM band;
 - ✓Or 10 channels in the 915MHz ISM band and 1 channel in the European 868MHz band.

Fig 1: Frequency behaviour of IEEE802.15.4 in the 2.4 GHz-ISM-band (courtesy oi Free scale [5])

868MHz / 915MHz PHY

PHY Packet Fields

- Preamble (32 bits) synchronization
- Start of Packet Delimiter (8 bits)
- PHY Header (8 bits) PSDU length
- PSDU (0 to 1016 bits) Data field

2.4 GHz PHY

- 250 kb/s (4 bits/symbol, 62.5 ksymbols/s)
- Data modulation is 16-ary orthogonal modulation
- 16 symbols are orthogonal set of 32-chip PN codes
- Chip modulation is O-QPSK at 2.0 Mchips/s

868MHz/915MHz PHY

- Symbol Rate
 - 868 MHz Band: 20 kb/s (1 bit/symbol, 20 ksymbols/s)
 - 915 MHz Band: 40 kb/s (1 bit/symbol, 40 ksymbols/s)
- Data modulation is BPSK with differential encoding
- Spreading code is a 15-chip m-sequence
- Chip modulation is BPSK at
 - 868 MHz Band: 300 kchips/s
 - 915 MHz Band: 600 kchips/s

Transmit Power

Capable of at least .5 mW

Transmit Center Frequency Tolerance

• ± 40 ppm

Receiver Sensitivity (Packet Error Rate <1%)

- ≤-85 dBm @ 2.4 GHz band
- <-92 dBm @ 868/915 MHz band

Rx Signal Strength Indication Measurements

- Packet strength indication
- Clear channel assessment
- Dynamic channel selection

- Relevant issues for regulatory testing
 - IEEE 802.15.4 radios
 - May or may not be variable for power output
 - Nominally 0dBm output
 - PCB antennas are the norm
 - Generally have third party lab certification for conformance to IEEE 802.15.4 radio/PHY
 - May or may not have IEEE 802.15.4 MAC

- Relevant issues for regulatory testing
 - IEEE 802.15.4 radios manufacturers for 2.4GHz
 - Chipcon AS has 60% of the market
 - Freescale Semiconductors radios are common
 - Oki Semiconductor radios are also common
 - Most implementations have integrated radios in a two chip solution, or in a module with integrated microcontroller

- Relevant issues for regulatory testing
 - IEEE 802.15.4 radios manufacturers for 2.4GHz
 - Currently Norway, US, and Japan
 - Up and coming from England, Korea, and Taiwan
 - IEEE 802.15.4 radios manufacturers for 868/915 MHz
 - Currently Germany and US

IEEE 802.15.4 Medium ACcess (MAC)

Upper Layers

IEEE 802.2 LLC

Other LLC

IEEE 802.15.4 MAC

IEEE 802.15.4 868/915 MHz PHY 2400 MHz PHY

- Full function device (FFD)
 - Any topology
 - Network coordinator capable
 - Talks to any other device
- Reduced function device (RFD)
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

4 Types of MAC Frames:

- Data Frame
- Beacon Frame
- Acknowledgment Frame
- MAC Command Frame

Command frame	Command name	RFD		Sub-down
identifier	Command name	Tx	Rx	Subclause
0 x 01	Association request	х		7.3.1.1
0 x 02	Association response		X	7.3.1.2
0 x 03	Disassociation notification	Х	X	7.3.1.3
0 x 04	Data request	X		7.3.2.1
0 x 05	PAN ID conflict notification	Х		7.3.2.2
0 x 06	Orphan notification	X		7.3.2.3
0 x 07	Beacon request			7.3.2.4
0 x 08	Coordinator realignment		Х	7.3.2.5
0 x 09	GTS request			7.3.3.1
0 x 0a-0 x ff	Reserved			_

- Full function device
- Reduced function device

Clustered stars - for example, cluster nodes exist between rooms of a hotel and each room has a star network for control.

Full function device

Reduced function device

Communications flow

- Full function device
- Reduced function device

Communications flow

- Relevant issues for Regulatory Testing
 - IEEE 802.15.4 MAC or proprietary MAC
 - For IEEE 802.15.4 MAC, ZigBee Alliance requires formal compliance with the specification
 - Currently: Ember Corporation, Chipcon AS, Freescale Semiconductors, Integration Associates, Helicomm Corporation have conforming MACs
 - For non-IEEE 802.15.4 MAC, numerous niche market implementations
 - Point-to-Point and MESH applications
 - Some are bandwidth hoarding

- Relevant issues for Regulatory Testing
 - IEEE 802.15.4 MAC
 - For IEEE 802.15.4 MAC, currently limited number of microcontroller implementations:
 - Atmel Corporation ATMEGA128
 - Freescale Semiconductor H08
 - Renesas Corporation M16C
 - Silicon Laboratories 8051

Relevant issues for Regulatory Testing

- MARKET for IEEE 802.15.4 systems is LARGER than ZigBee market
- ZigBee controls the IEEE 802.15.4 market

ZigBee

ZigBee Application Framework

Networking App Layer (NWK)

ZigBee

Data Link Controller (DLC)

IEEE 802.15.4 LLC

IEEE 802.2 LLC, Type I

IEEE 802.15.4 MAC

IEEE 802.15.4 868/915 MHz PHY IEEE 802.15.4 2400 MHz PHY

e.g. Freescale MC13192 radio

e.g. Freescale H08 CPU

Key Points

 ZigBee isolates the Application Layer (Application Framework) from the Network Layer and the MAC layer

 Devices talk to other Devices, without worrying about the MESH network underneath

- What does the IEEE 802.15.4 PHY/MAC enable ZigBee to do?
 - Enables Networking Formation
 - Enables Communication between peer devices

 What does the ZigBee enable IEEE 802.15.4 PHY/MAC to do?

- Enables MESH
- Enables HOPPING/RELAYING
- Enables BRIDGING
- Enables ROUTING
- Enables Self-mending of ROUTES
- Enables Common Application Framework

- ZigBee frees the application developer from details of wireless communication
- Common framework ("Application Framework") defined that abstracts the requirements of interfacing with the Application Support Sublayer (APS)
- API to protocol stack specific to individual manufacturers

HOME AUTOMATION (HA) PROFILE

TÜV Rheinland Group

INDUSTRIAL PLANT MONITORING (IPM) PROFILE Switch Device Temperature Monitor **Temperature Sensor Device Device** Temperature Sensor Configuration Device Vibration Monitor Vibration Sensor Vibration Sensor Device **Device Configuration Device** Master Controller **Error Monitoring** Vibration Analyzer **Device** Device **Device TÜV Rheinland Group**

- What are ZigBee Application Profiles?
 - Grouping of specific Devices that interact within tha Application Profile grouping
 - Multiple manufacturers will develop Devices for specific Application Profiles
 - E.g.: Honeywell and Danfoss may build ZigBee IPM Profile compatible temperature sensors.
 - Other Profiles: HVAC, HCL, etc.

Multiple Application Profiles may coexist on one ZigBee Device

Device / Service Discovery / Binding Management / Networking Management / Node and Security Functions

ZigBee Device Object

Specific Device from ZigBee Device Application Profile

One Device: ZDO

Part of ZCP

- -NWK Address Request
- -IEEE Address Request
- -Node Description Request
- -Power Description Request
- -Endpoint Device Bind Request
- -Bind Request
- -Unbind Request
- -Network Remote Discovery
- -Channel LQI
- -Binding Table Information
- -Leaving Network
- -Discovery
- -Joining a PAN
- -Leaving a PAN
- -Security Key
- -Security Authentication
- -etc....

- ZigBee Compliant Platform (ZCP)
 - Official Certification given to hardware/software combinations
 - Contains the IEEE 802.15.4 Radio
 - Contains the IEEE 802.15.4 MAC on a specific microcontroller
 - Contains the ZigBee Protocol Stack, including the ZDO, APS, NWK, SEC and API to Application Framework

- Currently Four ZCP manufacturers:
 - Ember Corporation
 - Chipcon AS
 - Freescale Semiconductors
 - Integration Associates
- All ZigBee products will be based on existing ZCP

- Relevant issues for Regulatory Testing
 - ZCP does not provide direct control of IEEE 802.15.4 radio
 - Most likely, special code build necessary
 - Special build will not function as a ZigBee device, but simply as an IEEE 802.15.4 radio
 - Only ZCP manufacturers can provide special builds
 - Actual ZigBee products will have limited I/F

Q & A

Contact Information

jlin@us.tuv.com

925-249-9123

contact@zigbee.jp

TÜV Rheinland Group